

Issues in Empirical Machine Learning Research

Antal van den Bosch

ILK / Language and Information Science
Tilburg University, The Netherlands

SIKS - 22 November 2006

Issues in ML Research

- A brief introduction
- (Ever) progressing insights from past 10 years:
 - The curse of interaction
 - Evaluation metrics
 - -Bias and variance
 - -There's no data like more data

Machine learning

- Subfield of artificial intelligence
 - Identified by Alan Turing in seminal 1950 article *Computing Machinery and Intelligence*
- (Langley, 1995; Mitchell, 1997)
- Algorithms that learn from examples
 - Given task T, and an example base E of examples of T (input-output mappings: supervised learning)

Machine learning Roots

- Parent fields:
 - Information theory
 - Artificial intelligence
 - Pattern recognition
 - Scientific discovery
- Took off during 70s
- Major algorithmic improvements during 80s
- Forking: neural networks, data mining

Machine Learning: 2 strands

- Theoretical ML (what can be proven to be learnable by what?)
 - Gold, identification in the limit
 - Valiant, probably approximately correct learning
- Empirical ML (on real or artificial data)
 - Evaluation Criteria:
 - Accuracy
 - Quality of solutions
 - Time complexity
 - Space complexity
 - Noise resistance

Empirical macnine learning

- Supervised learning:
 - Decision trees, rule induction, version spaces
 - Instance-based, memory-based learning
 - Hyperplane separators, kernel methods, neural networks
 - Stochastic methods, Bayesian methods
- Unsupervised learning:
 - Clustering, neural networks
- Reinforcement learning, regression, statistical analysis, data mining, knowledge discovery,

Empirical ML: 2 Flavours

- Greedy
 - Learning
 - abstract model from data
 - Classification
 - apply abstracted model to new data
- Lazy
 - Learning
 - store data in memory
 - Classification
 - compare new data to data in memory

Greedy vs Lazy Learning

Greedy:

- Decision tree induction
 - CART, C4.5
- Rule induction
 - CN2, Ripper
- Hyperplane discriminators
 - Winnow, perceptron, backprop, SVM / Kernel methods
- Probabilistic
 - Naïve Bayes, maximum entropy, HMM, MEMM, CRF
- (Hand-made rulesets)

Lazy:

- k-Nearest Neighbour
 - MBL, AM
 - Local regression

Empirical methods

- Generalization performance:
 - How well does the classifier do on UNSEEN examples?
 - (test data: i.i.d independent and identically distributed)
 - Testing on training data is not generalization, but reproduction ability
- How to measure?
 - Measure on separate test examples drawn from the same population of examples as the training examples
 - But, avoid single luck; the measurement is supposed to be a trustworthy estimate of the real performance on *any* unseen material.

n-fold crossvalidation

- (Weiss and Kulikowski, Computer systems that learn, 1991)
- Split example set in *n* equal-sized partitions
- For each partition,
 - Create a training set of the other n-1 partitions, and train a classifier on it
 - Use the current partition as test set, and test the trained classifier on it
 - Measure generalization performance
- Compute average and standard deviation on the *n* performance measurements

Significance tests

• Two-tailed paired *t*-tests work for comparing 2 10-fold CV outcomes

- But many type-I errors (false hits)

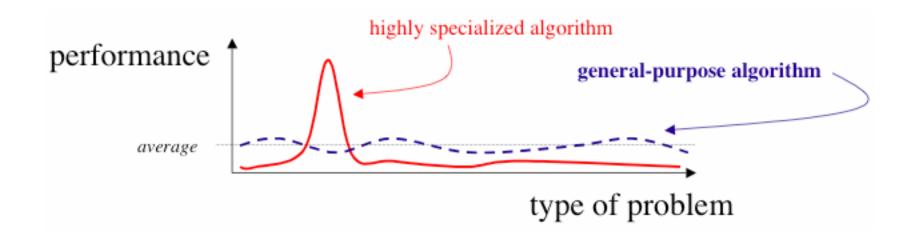
- Or 2 x 5-fold CV (Salzberg, On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach, 1997)
- Other tests: McNemar, Wilcoxon sign test
- Other statistical analyses: ANOVA, regression trees
- Community determines what is *en vogue*

No free lunch

- (Wolpert, Schaffer; Wolpert & Macready, 1997)
 - No single method is going to be best in all tasks
 - No algorithm is always better than another one
 - No point in declaring victory
- But:
 - Some methods are more suited for some types of problems
 - No rules of thumb, however

__ · _ ¬ ¬ · _ ¬

No free lunch



(From Wikipedia)

Issues in ML Research

- A brief introduction
- (Ever) progressing insights from past 10 years:
 - The curse of interaction
 - Evaluation metrics
 - -Bias and variance
 - -There's no data like more data

Algorithmic parameters

- Machine learning meta problem:
 - -Algorithmic parameters change bias
 - Description length and noise bias
 - Eagerness bias
 - -Can make quite a difference (Daelemans, Hoste, De Meulder, & Naudts, ECML 2003)
 - Different parameter settings = functionally different system

Daelemans *et al*. (2003): Diminutive inflection

	Ripper	TiMBL
Default	96.3	96.0
Feature selection	96.7	97.2
Parameter optimization	97.3	97.8
Joint	97.6	97.9

WSD (line)

Similar: little, make, then, time, ...

	Ripper	TiMBL
Default	21.8	20.2
Optimized parameters	22.6	27.3
Optimized features	20.2	34.4
Optimized parameters + FS	33.9	38.6

Known solution

- Classifier wrapping (Kohavi, 1997)
 - -Training set → train & validate sets
 - Test different setting combinations
 - Pick best-performing
- Danger of overfitting
 - -When improving on training data, while *not* improving on test data

Optimizing wrapping

- Worst case: exhaustive testing of "all" combinations of parameter settings (pseudo-exhaustive)
- Simple optimization:
 - -Not test all settings

Optimized wrapping

- Worst case: exhaustive testing of "all" combinations of parameter settings (pseudo-exhaustive)
- Optimizations:
 - -Not test all settings
 - -Test all settings in less time

Optimized wrapping

- Worst case: exhaustive testing of "all" combinations of parameter settings (pseudo-exhaustive)
- Optimizations:
 - -Not test all settings
 - -Test all settings in less time
 - -With less data

Progressive sampling

- Provost, Jensen, & Oates (1999)
- Setting:
 - -1 algorithm (parameters already set)
 - -Growing samples of data set
- Find point in learning curve at which no additional learning is needed

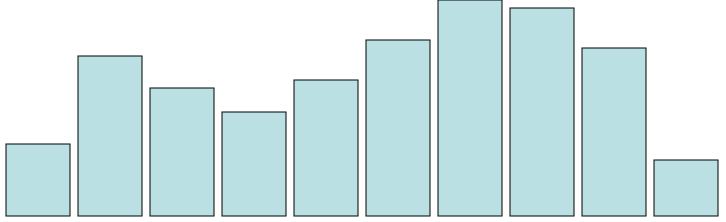
Wrapped progressive sampling

- (Van den Bosch, 2004)
- Use **increasing** amounts of data
- While validating **decreasing** numbers of setting combinations
- E.g.,
 - Test "all" settings combinations on a small but sufficient subset
 - Increase amount of data stepwise
 - At each step, discard lowerperforming setting combinations

- Given training set of labeled examples,
 - Split internally in 80% training and 20% held-out set
 - Create clipped parabolic sequence of sample sizes
 - $n \text{ steps} \rightarrow \text{multipl. factor } n^{\text{th}} \text{ root of 80\%}$ set size
 - Fixed start at 500 train / 100 test
 - E.g. {500, 698, 1343, 2584, 4973, 9572, 18423, 35459, 68247, 131353, 252812, 486582}
 - · That approve is always one of train approve

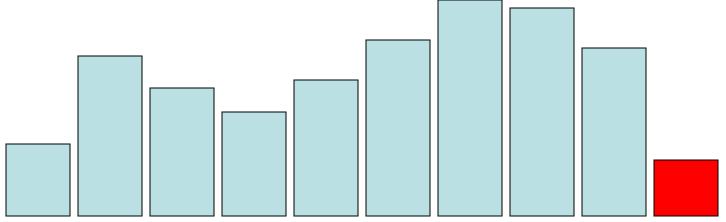
- Create pseudo-exhaustive pool of all parameter setting combinations
- Loop:
 - Apply current pool to current train/test sample pair
 - Separate good from bad part of pool
 - Current pool := good part of pool
 - Increase step
- Until one best setting combination left, or all steps performed (random pick)

• Separate the good from the bad:



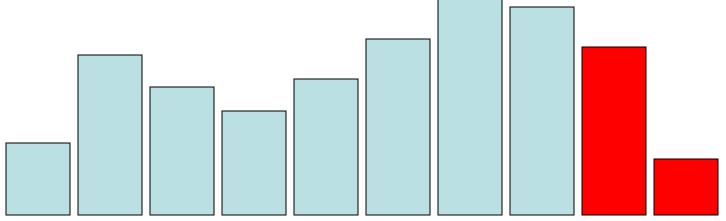
min

• Separate the good from the bad:



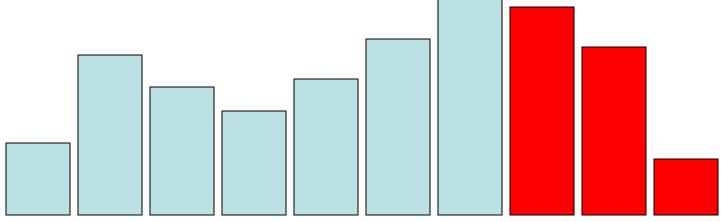
min

• Separate the good from the bad:



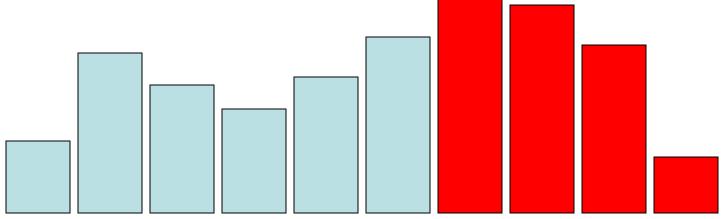
min

• Separate the good from the bad:



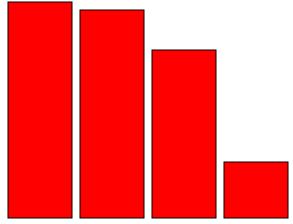
min

• Separate the good from the bad:



min

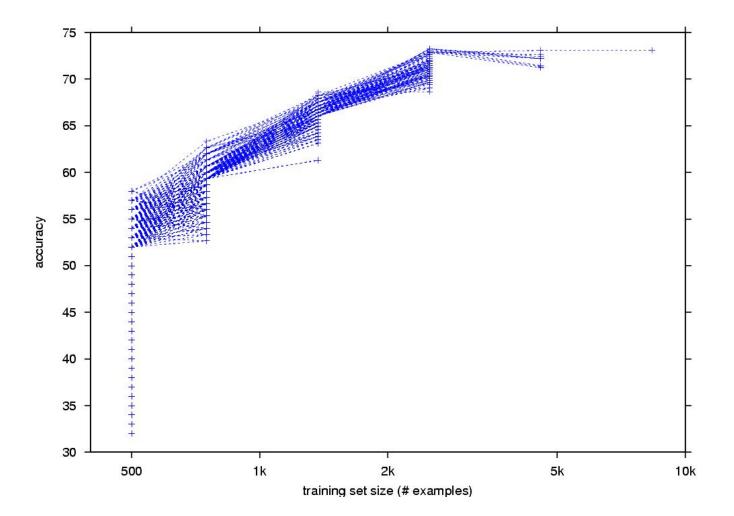
• Separate the good from the bad:



min

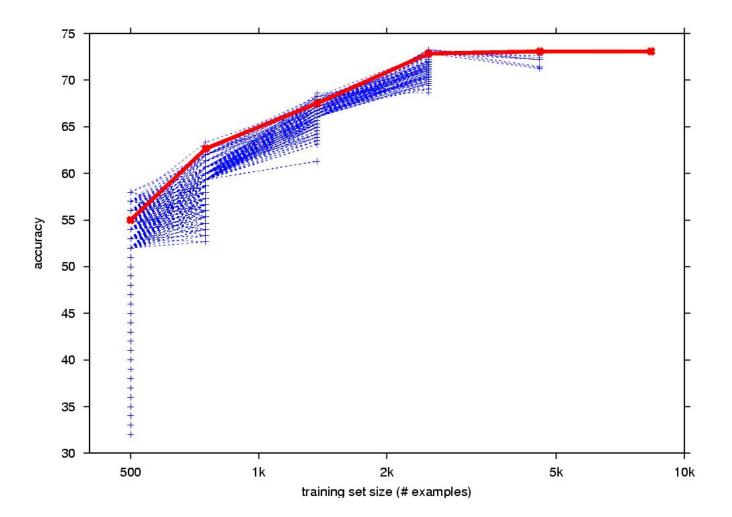
"Mountaineering

~~~~~ i + i ~~ "



"Mountaineering

~~~~~ i + i ~~ "



Customizations

algorithm	# parameters	Total # setting combinations
Ripper (Cohen, 1995)	6	648
C4.5 (Quinlan, 1993)	3	360
Maxent (Giuasu et al, 1985)	2	11
Winnow (Littlestone, 1988)	5	1200
IB1 (Aha et al, 1991)	5	925

Experiments: datasets

Task	# Examples	# Features	# Classes	Class entropy
audiology	228	69	24	3.41
bridges	110	7	8	2.50
soybean	685	35	19	3.84
tic-tac- toe	960	9	2	0.93
votes	437	16	2	0.96
car	1730	6	4	1.21
connect-4	67559	42	3	1.22
kr-vs-kp	3197	36	2	1.00
splice	3192	60	3	1.48
nursery	12961	8	5	1.72

Experiments: results

Algorith m	normal Error reductio n	wrapping Reductio n/ combinat	WPS Error reductio n	Reductio n/ combinat
Ripper	16.4	ion 0.025	27.9	ion 0.043
C4.5	7.4	0.021	7.7	0.021
Maxent	5.9	0.536	0.4	0.036
IB1	30.8	0.033	31.2	0.034
Winnow	17.4	0.015	32.2	0.027

Discussion

- Normal wrapping and WPS improve generalization accuracy
 - A bit with a few parameters (Maxent, C4.5)
 - More with more parameters (Ripper, IB1, Winnow)
 - -13 significant wins out of 25;
 - 2 significant losses out of 25
- Surprisingly close ([0.015 0.043]) average error reductions per setting

Issues in ML Research

- A brief introduction
- (Ever) progressing insights from past 10 years:
 - The curse of interaction
 - Evaluation metrics
 - -Bias and variance
 - -There's no data like more data

Evaluation metrics

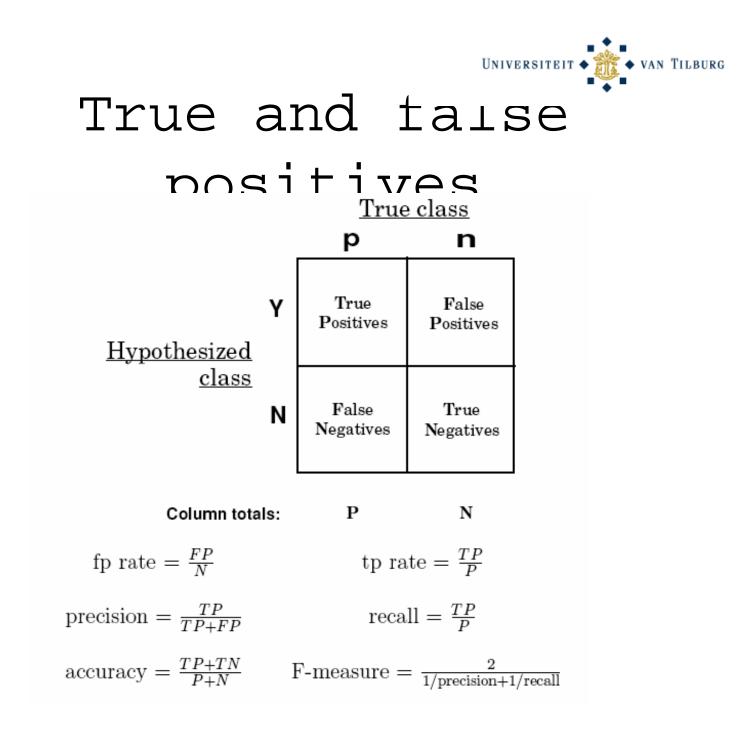
- Estimations of generalization performance (on unseen material)
- Dimensions:
 - Accuracy or more task-specific metric
 - Skewed class distribution
 - Two classes vs multi-class
 - Single or multiple scores
 - *n*-fold CV, leave_one_out
 - Random splits
 - Single splits
 - Significance tests

Accuracy is bad

- Higher accuracy / lower error rate does not necessarily imply better performance on target task
- "The use of error rate often suggests insufficiently careful thought about the real objectives of the research" - David Hand, Construction and Assessment of Classification Rules (1997)

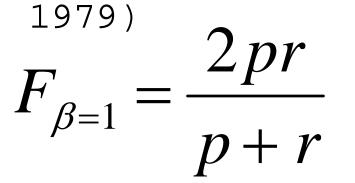
Other candidates?

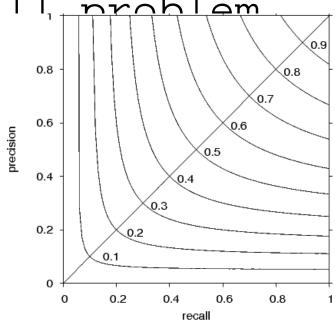
- Per-class statistics using true and false positives and negatives
 - -Precision, recall, F-score
 - -ROC, AUC
- Task-specific evaluations
- Cost, speed, memory use, accuracy within time frame



F-score is better

- When your problem is expressible as a per-class precision and recall, problem
- (like in IR, Van R

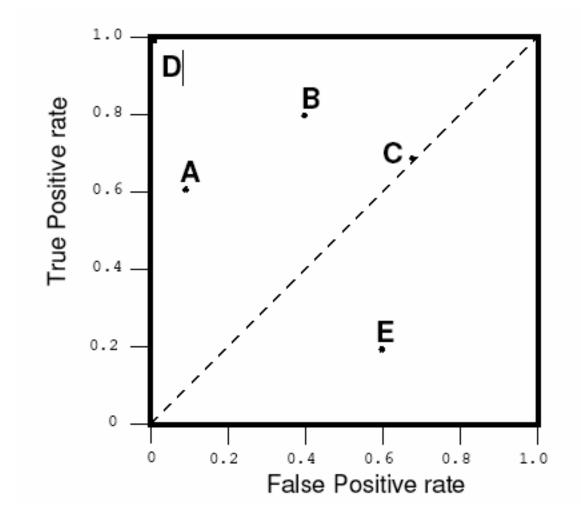


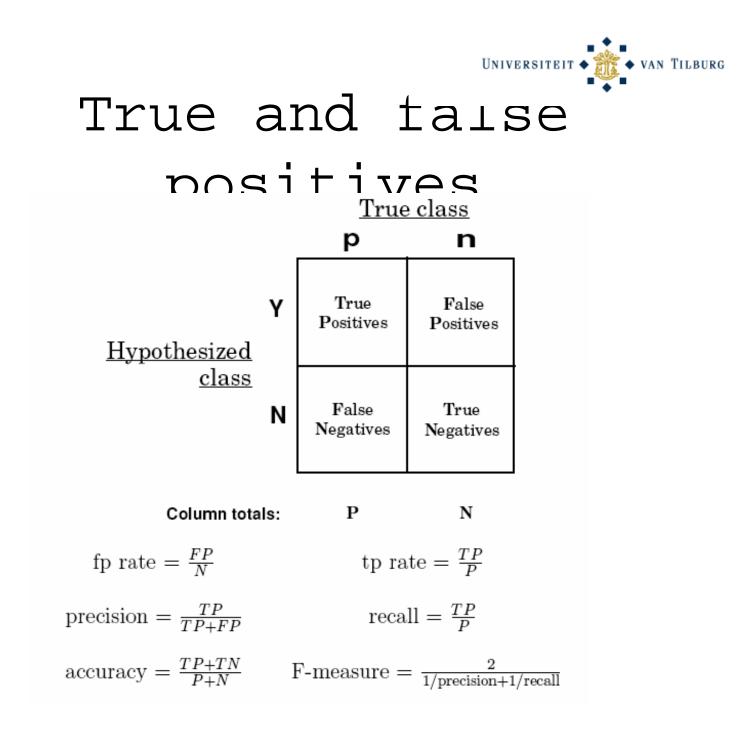


ROC is the best

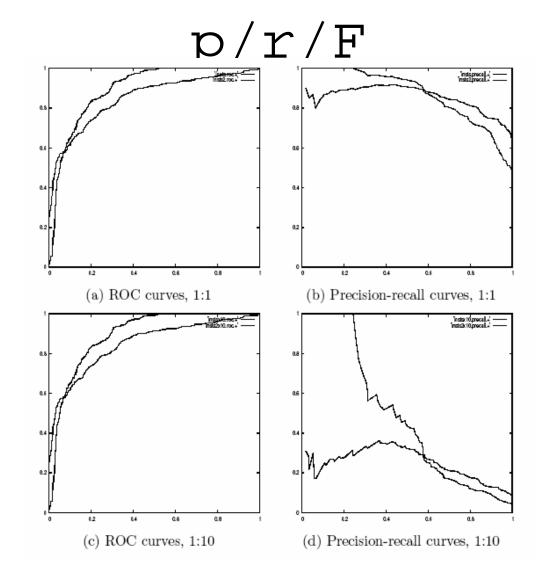
- Receiver Operating Characteristics
- E.g.
 - ECAI 2004 workshop on ROC
 - Fawcett's (2004) ROC 101
- Like precision/recall/F-score, suited "for domains with skewed class distribution and unequal classification error costs."

ROC curve



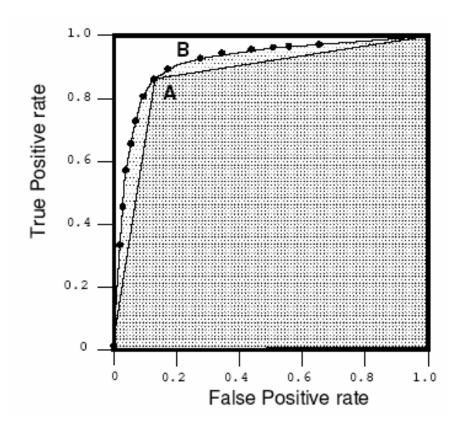


ROC is better than



AUC, ROC's F-score

• Area Under the Curve



Multiple class AUC?

- AUC per class, *n* classes:
- Macro-average: $sum(AUC (c_1) + ... + AUC(c_n))/n$
- Micro-average:

$$AUC_{total} = \sum_{c_i \in C} AUC(c_i) \cdot p(c_i)$$

F-score vs AUC

- Which one is better actually depends on the task.
- Examples by Reynaert (2005), spell <u>checker performance on fictitious</u>

System	Flagged	Correct ed	Recall	Precisi on	F-score	AUC
A	10,0 00	100	1	0.01	0.02	0.75
В	100	50	0.5	0.5	0.5	0.74

Significance & F-score

- t-tests are valid on accuracy and recall
- But are invalid on precision and F-score
- Accuracy is bad; recall is only half the story
- Now what?

Randomization tests

- (Noreen, 1989; Yeh, 2000; Tjong Kim Sang, CoNLL shared task; stratified shuffling)
- Given classifier's output on a *single* test set,
 - Produce many small subsets
 - Compute standard deviation
- Given two classifiers' output,
 - Do as above
 - Compute significance (Noreen, 1989)

So?

- Does Noreen's method work with AUC? We tend to think so
- Incorporate AUC in evaluation scripts
- Favor Noreen's method in
 - "shared task" situations (single test sets)
 - F-score / AUC estimations (skewed classes)
- Maintain matched paired *t*-tests where accuracy is still OK.

Issues in ML Research

- A brief introduction
- (Ever) progressing insights from past 10 years:
 - The curse of interaction
 - Evaluation metrics
 - -Bias and variance
 - -There's no data like more data

Bias and variance

Two meanings!

- 1. Machine learning bias and variance - the degree to which an ML algorithm is flexible in adapting to data
- 2. Statistical bias and variance the balance between systematic and variable errors

Machine learning plas & variance

- Naïve Bayes:
 - -High bias (strong assumption: feature independence)
 - -Low variance
- Decision trees & rule learners:
 - -Low bias (adapt themselves to data)
 - -High variance (changes in training data can cause radical

Statistical plas & variance

- Decomposition of a classifier's error:
 - Intrinsic error: intrinsic to the data. Any classifier would make these errors (*Bayes error*)
 - Bias error: recurring error, systematic error, independent of training data.
 - Variance error: non-systematic error; variance in error, averaged over training sets.
- E.g. Kohavi and Wolpert (1996), Bias Plus Variance Decomposition

Variance and overfitting

- Being too faithful in reproducing the classification in the training data
 - Does not help generalization performance on unseen data **overfitting**
 - Causes high variance
- Feature selection (discarding unimportant features) helps avoiding overfitting, thus lowers variance
- Other "smoothing bias" methods:

Relation between the two?

- Suprisingly, NO!
 - -A high machine learning bias does not lead to a low number or portion of bias errors.
 - -A high bias is not necessarily good; a high variance is not necessarily bad.
 - In the literature: bias error often surprisingly equal for algorithms with very different machine learning bias

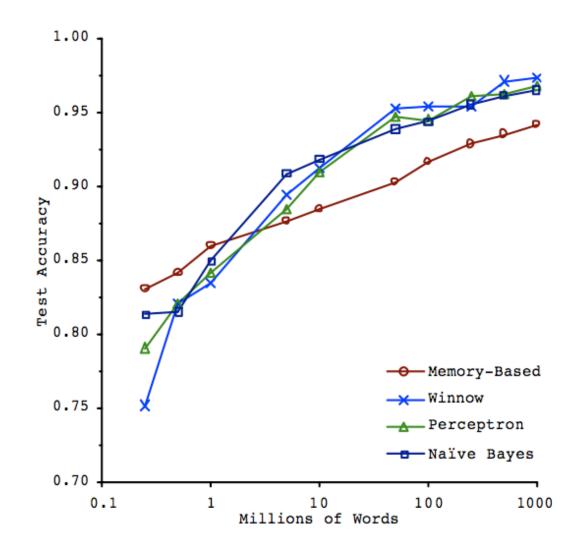
Issues in ML Research

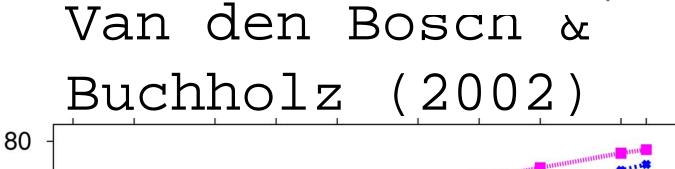
- A brief introduction
- (Ever) progressing insights from past 10 years:
 - The curse of interaction
 - Evaluation metrics
 - -Bias and variance
 - There's no data like more data

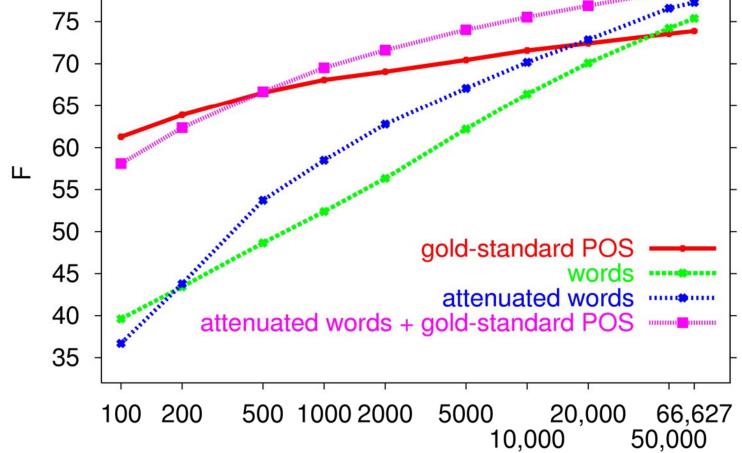
There's no data like more data

- Learning curves
 - -At different amounts of training data,
 - -algorithms attain different scores on test data
 - -(recall Provost, Jensen, Oats 1999)
- Where is the ceiling?
- When not at the ceiling, do differences between

Banko & Brill (2001)







sentences

Learning curves

- Tell more about
 - -the task
 - -features, representations
 - -how much more data needs to be gathered
 - -scaling abilities of learning algorithms
- Relativity of differences found at point when learning curve has not flattened

Closing comments

- Standards and norms in experimental & evaluative methodology in empirical research fields always on the move
- Machine learning and search are sides of the same coin
- Scaling abilities of ML algorithms is an

Software available at http://ilk.uvt.nl

- paramsearch 1.0 (WPS)
- TiMBL 5.1

Antal.vdnBosch@uvt.nl

Credits

- Curse of interaction: Véronique Hoste and Walter Daelemans (University of Antwerp)
- Evaluation metrics: Erik Tjong Kim Sang (University of Amsterdam), Martin Reynaert (Tilburg University)
- Bias and variance: Iris Hendrickx (University of Antwerp), Maarten van Someren (University of Amsterdam)
- There's no data like more data: