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Issues in ML Research

• A brief introduction
• (Ever) progressing insights 
from past 10 years:
– The curse of interaction
– Evaluation metrics
– Bias and variance
– There’s no data like more data



Machine learning

• Subfield of artificial 
intelligence
– Identified by Alan Turing in seminal 
1950 article Computing Machinery and 
Intelligence

• (Langley, 1995; Mitchell, 1997)
• Algorithms that learn from 
examples
– Given task T, and an example base E 
of examples of T (input-output 
mappings: supervised learning)
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Machine learning: 
Roots

• Parent fields:
– Information theory 
– Artificial intelligence 
– Pattern recognition
– Scientific discovery

• Took off during 70s 
• Major algorithmic improvements 
during 80s 

• Forking: neural networks, data 
mining 



Machine Learning: 2 
strands

• Theoretical ML (what can be proven to 
be learnable by what?) 
– Gold, identification in the limit
– Valiant, probably approximately correct 

learning

• Empirical ML (on real or artificial 
data) 
– Evaluation Criteria: 

• Accuracy
• Quality of solutions 
• Time complexity
• Space complexity
• Noise resistance



Empirical machine 
learning

• Supervised learning:
– Decision trees, rule induction, 
version spaces

– Instance-based, memory-based learning
– Hyperplane separators, kernel 
methods, neural networks

– Stochastic methods, Bayesian methods

• Unsupervised learning:
– Clustering, neural networks

• Reinforcement learning, 
regression, statistical analysis, 
data mining, knowledge discovery, 



Empirical ML: 2 
Flavours

• Greedy
– Learning

• abstract model from data

– Classification
• apply abstracted model to new data

• Lazy
– Learning

• store data in memory

– Classification
• compare new data to data in memory



Greedy vs Lazy 
Learning

Greedy:
– Decision tree 

induction
• CART, C4.5

– Rule induction
• CN2, Ripper

– Hyperplane 
discriminators
• Winnow, perceptron, 
backprop, SVM / 
Kernel methods

– Probabilistic
• Naïve Bayes, maximum 
entropy, HMM, MEMM, 
CRF

– (Hand-made rulesets)

Lazy:
– k-Nearest 
Neighbour
• MBL, AM
• Local regression



Empirical methods

• Generalization performance:
– How well does the classifier do on UNSEEN
examples?

– (test data: i.i.d - independent and 
identically distributed)

– Testing on training data is not 
generalization, but reproduction ability

• How to measure?
– Measure on separate test examples drawn from 
the same population of examples as the 
training examples

– But, avoid single luck; the measurement is 
supposed to be a trustworthy estimate of the 
real performance on any unseen material.



n-fold cross-
validation

• (Weiss and Kulikowski, Computer systems 
that learn, 1991)

• Split example set in n equal-sized 
partitions

• For each partition,
– Create a training set of the other n-1 
partitions, and train a classifier on it

– Use the current partition as test set, and 
test the trained classifier on it

– Measure generalization performance

• Compute average and standard deviation 
on the n performance measurements



Significance tests

• Two-tailed paired t-tests work for 
comparing 2 10-fold CV outcomes
– But many type-I errors (false hits)

• Or 2 x 5-fold CV (Salzberg, On 
Comparing Classifiers: Pitfalls to 
Avoid and a Recommended Approach, 1997)

• Other tests: McNemar, Wilcoxon sign 
test

• Other statistical analyses: ANOVA, 
regression trees

• Community determines what is en vogue



No free lunch

• (Wolpert, Schaffer; Wolpert & 
Macready, 1997)
– No single method is going to be best 
in all tasks

– No algorithm is always better than 
another one

– No point in declaring victory

• But:
– Some methods are more suited for some 
types of problems

– No rules of thumb, however
E t l h d t t l t



No free lunch

(From Wikipedia)
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Algorithmic parameters

• Machine learning meta 
problem:
– Algorithmic parameters change 
bias
•Description length and noise bias
•Eagerness bias 

– Can make quite a difference 
(Daelemans, Hoste, De Meulder, & 
Naudts, ECML 2003)

– Different parameter settings = 
functionally different system



Daelemans et al. 
(2003): Diminutive 

inflection 

97.997.6Joint

97.897.3Parameter 
optimization

97.296.7Feature 
selection

96.096.3Default

TiMBLRipper



WSD (line) 
Similar: little, make, then, time, …

34.420.2Optimized features

38.633.9Optimized parameters + FS

27.322.6Optimized parameters

20.221.8Default

TiMBLRipper



Known solution

• Classifier wrapping (Kohavi, 
1997)
– Training set → train & validate 
sets

– Test different setting 
combinations

– Pick best-performing

• Danger of overfitting
– When improving on training data, 
while not improving on test data

C tl



Optimizing wrapping

• Worst case: exhaustive 
testing of “all” combinations 
of parameter settings 
(pseudo-exhaustive)

• Simple optimization:
– Not test all settings
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Optimized wrapping

• Worst case: exhaustive 
testing of “all” combinations 
of parameter settings 
(pseudo-exhaustive)

• Optimizations:
– Not test all settings
– Test all settings in less time
– With less data



Progressive sampling

• Provost, Jensen, & Oates 
(1999)

• Setting:
– 1 algorithm (parameters already 
set)

– Growing samples of data set

• Find point in learning curve 
at which no additional 
learning is needed



Wrapped progressive 
sampling

• (Van den Bosch, 2004)
• Use increasing amounts of data
• While validating decreasing
numbers of setting combinations

• E.g.,
– Test “all” settings combinations on a 
small but sufficient subset

– Increase amount of data stepwise
– At each step, discard lower-
performing setting combinations



Procedure (1)

• Given training set of labeled 
examples,
– Split internally in 80% training and 
20% held-out set

– Create clipped parabolic sequence of 
sample sizes
• n steps → multipl. factor nth root of 80% 
set size

• Fixed start at 500 train / 100 test
• E.g. {500, 698, 1343, 2584, 4973, 9572, 
18423, 35459, 68247, 131353, 252812, 
486582}

• Test sample is always 20% of train sample



Procedure (2)

• Create pseudo-exhaustive pool of 
all parameter setting combinations

• Loop:
– Apply current pool to current 
train/test sample pair

– Separate good from bad part of pool
– Current pool := good part of pool
– Increase step

• Until one best setting combination 
left, or all steps performed 
(random pick)



Procedure (3)

• Separate the good from the 
bad:

min max
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Procedure (3)

• Separate the good from the 
bad:

min max



“Mountaineering 
competition”



“Mountaineering 
competition”



Customizations

9255IB1 (Aha et al, 1991)

12005Winnow (Littlestone, 
1988)

112Maxent (Giuasu et al, 
1985)

3603C4.5 (Quinlan, 1993)

6486Ripper (Cohen, 1995)

Total # 
setting 

combinations

# 
parametersalgorithm



Experiments: datasets

1.725812961nursery

1.483603192splice

1.002363197kr-vs-kp

1.2234267559connect-4

1.21461730car

0.96216437votes

0.9329960tic-tac-
toe

3.841935685soybean

2.5087110bridges

3.412469228audiology

Class 
entropy# Classes# Features# ExamplesTask



Experiments: results
WPSwrappingnormal

0.02732.20.01517.4Winnow

0.03431.20.03330.8IB1

0.0360.40.5365.9Maxent

0.0217.70.0217.4C4.5

0.04327.90.02516.4Ripper

Reductio
n/
combinat
ion

Error 
reductio
n

Reductio
n/
combinat
ion

Error 
reductio
n

Algorith
m



Discussion

• Normal wrapping and WPS improve 
generalization accuracy
– A bit with a few parameters (Maxent, 
C4.5)

– More with more parameters (Ripper, 
IB1, Winnow)

– 13 significant wins out of 25; 
– 2 significant losses out of 25

• Surprisingly close ([0.015 -
0.043]) average error reductions 
per setting
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Evaluation metrics

• Estimations of generalization 
performance (on unseen material)

• Dimensions:
– Accuracy or more task-specific metric

• Skewed class distribution
• Two classes vs multi-class

– Single or multiple scores
• n-fold CV, leave_one_out
• Random splits 
• Single splits

– Significance tests



Accuracy is bad

• Higher accuracy / lower error rate 
does not necessarily imply better 
performance on target task

• “The use  of error rate often 
suggests insufficiently careful 
thought about the real objectives 
of the research” - David Hand, 
Construction  and Assessment of 
Classification  Rules (1997)



Other candidates?

• Per-class statistics using 
true and false positives and 
negatives
– Precision, recall, F-score
– ROC, AUC

• Task-specific evaluations
• Cost, speed, memory use, 
accuracy within time frame



True and false 
positives



F-score is better

• When your problem is 
expressible as a per-class 
precision and recall problem

• (like in IR, Van Rijsbergen,
1979)

Fβ =1 =
2pr
p + r



ROC is the best

• Receiver Operating Characteristics
• E.g. 

– ECAI 2004 workshop on ROC
– Fawcett’s (2004) ROC 101

• Like precision/recall/F-score, 
suited “for domains with skewed 
class distribution and unequal 
classification error costs.”



ROC curve



True and false 
positives



ROC is better than 
p/r/F



AUC, ROC’s F-score

• Area Under the Curve



Multiple class AUC?

• AUC per class, n classes:
• Macro-average: sum(AUC (c1) + 
… + AUC(cn))/n

• Micro-average:



F-score vs AUC

• Which one is better actually 
depends on the task.

• Examples by Reynaert (2005), spell 
checker performance on fictitious 
text with 100 errors:

0.74
7

0.50.50.550100B

0.75
0

0.020.011100
10,0
00

A

AUCF-score
Precisi

on
Recall

Correct
ed

FlaggedSystem



Significance & F-score

• t-tests are valid on accuracy 
and recall

• But are invalid on precision 
and F-score

• Accuracy is bad; recall is 
only half the story

• Now what?



Randomization tests

• (Noreen, 1989; Yeh, 2000; Tjong 
Kim Sang, CoNLL shared task; 
stratified shuffling)

• Given classifier’s output on a 
single test set,
– Produce many small subsets
– Compute standard deviation

• Given two classifiers’ output,
– Do as above
– Compute significance (Noreen, 1989)



So?

• Does Noreen’s method work with 
AUC? We tend to think so

• Incorporate AUC in evaluation 
scripts

• Favor Noreen’s method in 
– “shared task” situations (single test 
sets)

– F-score / AUC estimations (skewed 
classes)

• Maintain matched paired t-tests 
where accuracy is still OK.
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Bias and variance

Two meanings!
1. Machine learning bias and 

variance - the degree to which
an ML algorithm is flexible in 
adapting to data

2. Statistical bias and variance -
the balance between systematic 
and variable errors



Machine learning bias 
& variance

• Naïve Bayes:
– High bias (strong assumption: 
feature independence)

– Low variance

• Decision trees & rule 
learners:
– Low bias (adapt themselves to 
data)

– High variance (changes in 
training data can cause radical 



Statistical bias & 
variance

• Decomposition of a classifier’s 
error:
– Intrinsic error: intrinsic to the 
data. Any classifier would make these 
errors (Bayes error)

– Bias error: recurring error, 
systematic error, independent of 
training data.

– Variance error: non-systematic error; 
variance in error, averaged over
training sets.

• E.g. Kohavi and Wolpert (1996), 
Bias Plus Variance Decomposition 



Variance and 
overfitting

• Being too faithful in reproducing 
the classification in the training 
data
– Does not help generalization 
performance on unseen data -
overfitting

– Causes high variance

• Feature selection (discarding 
unimportant features) helps 
avoiding overfitting, thus lowers 
variance

• Other “smoothing bias” methods:
i i i



Relation between the 
two?

• Suprisingly, NO!
– A high machine learning bias 
does not lead to a low number or 
portion of bias errors.

– A high bias is not necessarily 
good; a high variance is not 
necessarily bad.

– In the literature: bias error 
often surprisingly equal for
algorithms with very different 
machine learning bias
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There’s no data like 
more data

• Learning curves
– At different amounts of training 
data,

– algorithms attain different 
scores on test data

– (recall Provost, Jensen, Oats 
1999)

• Where is the ceiling?
• When not at the ceiling, do 
differences between



Banko & Brill (2001)



Van den Bosch & 
Buchholz (2002)



Learning curves

• Tell more about
– the task
– features, representations
– how much more data needs to be 
gathered

– scaling abilities of learning 
algorithms

• Relativity of differences 
found at point when learning 
curve has not flattened



Closing comments

• Standards and norms in 
experimental & evaluative 
methodology in empirical 
research fields always on the 
move

• Machine learning and search
are sides of the same coin

• Scaling abilities of ML 
algorithms is an 
underestimated dimension



Software available at 
http://ilk.uvt.nl

• paramsearch 1.0 (WPS)
• TiMBL 5.1

Antal.vdnBosch@uvt.nl
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